A Time-Varying System - Missile Dynamics

Spyros Andreou
Department of Engineering Technology
Savannah State University, Savannah, GA 31404, United States
e-mail: andreous@savannahstate.edu

Abstract

Most of the control theory is developed around time-invariant systems where the state matrix A consists of scalars which are not functions of time. However, many physical systems are naturally modeled with the elements of the state matrix A depending on time. One example is the dynamics of a missile. Time-varying systems also arise when non-linear systems are linearized about a trajectory. In this work, the state-transition matrix is studied for time-varying systems in order to reach a general solution. The computational effort is significantly more complicated than the time-invariant case. There are many different methods in the literature for finding the state-transition matrix and one of them is adopted. Finally a case study of Missile Dynamics will be analyzed and simulated using MATLAB.

Keyword:

1. Introduction

In this work systems of the form $\dot{x}(t)=A(t) x(t)+B(t) u(t) ; x\left(t_{0}\right)=x_{0}$ will be considered where $A(t)$ and $B(t)$ are continuous functions of t and $u(t)$ is a piecewise continuous function of t. $\mathrm{X}(\mathrm{t})$ is the system state vector and $\mathrm{u}(\mathrm{t})$ is the input vector. Several people dealt with these systems and for more information the reader may consult references [1]-[3],[6]. The purpose of this research is to understand the link between mathematical models of the above form as applied to missile dynamics developed in reference [4]. The use of MATLAB is necessary to see the behavior of time-varying systems as the computing requirements are very complex. The reader may obtain more information about MATLAB, which stands for MATrix LABoratory in reference [5].

In the first part of this work some theoretical results are analyzed as well as a good computational method is adopted, see also [6], for finding the transition matrix $\Phi\left(\mathrm{t}, \mathrm{t}_{0}\right)$ of timevarying systems. The motivation is based on a system of missile dynamics whose transition (dynamics) matrix $A(t)$ depends on time. As explained in [4] the matrix $\Phi\left(t, t_{0}\right)$ relates the state at time t to the state at time t_{0}. It defines how the state $x\left(t_{0}\right)$ transitions into state $x(t)$. The second part will consist of the case study(missile dynamics), the analytical solution and the simulation part.

2. Theory Of Time-Varying System

Consider the general linear system

$$
\begin{aligned}
& \dot{\mathbf{x}}(t)=\mathbf{A}(t) \mathbf{x}(t)+\mathbf{B}(t) \mathbf{u}(t) \\
& \mathbf{y}(t)=\mathbf{C}(t) \mathbf{x}(t)+\mathbf{D}(t) \mathbf{u}(t)
\end{aligned}
$$

The general solution is given by with matrix dimensions as $A: n \times n, B: n \times p, C: r \times n$ and $D: r x$ p.

$$
\mathbf{x}(t)=\Phi\left(t, t_{0}\right) \mathbf{x}\left(t_{0}\right)+\int_{t_{0}}^{t} \Phi(t, \tau) \mathbf{B}(\tau) \mathbf{u}(\tau) d \tau
$$

where $\Phi\left(\mathrm{t}, \mathrm{t}_{0}\right)$ is the state transition matrix. In the time-invariant case this matrix is a simple exponential. In the time-varying case, however, there is no such a simple expression, in fact, $\Phi\left(\mathrm{t}, \mathrm{t}_{0}\right)$ varies from system to system. Furthermore, knowledge of $\Phi(\mathrm{t}, 0)$ is not adequate information for finding $\Phi\left(\mathrm{t}, \mathrm{t}_{0}\right)$. The state transition matrix must always satisfy the following relationships:

$$
\begin{aligned}
& \frac{\partial \phi\left(t, t_{0}\right)}{\partial t}=A(t) \phi\left(t_{s} t_{0}\right) \\
& \phi(\tau, \tau)=I
\end{aligned}
$$

where I is the identity matrix.
In addition $\Phi\left(\mathrm{t}, \mathrm{t}_{0}\right)$ has the following properties: For proofs see [3],[6].
a. $\phi\left(t_{2}, t_{1}\right) \phi\left(t_{1}, t_{0}\right)=\phi\left(t_{2}, t_{0}\right)$
b. $\phi^{-1}(t, T)=\phi(T, t)$
c. $\phi^{-1}(t, T) \phi(t, T)=I$
d. $\frac{d \phi\left(t, t_{0}\right)}{d t}=A(t) \phi\left(t, t_{0}\right)$

When the system is time invariant, the state transition matrix is given by

$$
\phi\left(t, t_{0}\right)=e^{A\left(t-t_{0}\right\}} \text { which satisfies the above properties. }
$$

A useful method in finding the state transition matrix for time-varying systems is the following: The reader may consult [6] for more information.

If $A(t)$ can be decomposed as the following sum,

$$
A(t)=\sum_{i=1}^{n} M_{i} f_{i}(t)
$$

where M_{i} is a constant matrix (that it commutes) such that $M_{i} M_{j}=M_{j} M_{i}$, and f_{i} is a single-valued function, then the state-transition matrix can be given as:

$$
\phi(t, T)=\prod_{i=1}^{m} e^{M_{i} \int_{7}^{t} f_{i}\{\theta) d \theta}
$$

A very good example is taken from [7].
Let the system matrix A for the time-varying system be

$$
A=\left[\begin{array}{cc}
t & 1 \\
-1 & t
\end{array}\right]
$$

This matrix can be decomposed as follows:

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] t+\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

Where $\mathrm{f} 1(\mathrm{t})=\mathrm{t}$, and $\mathrm{f} 2(\mathrm{t})=1$. Using the formula described above gives us:

$$
\phi(t, \tau)=e^{Z_{1} \int_{\tau}^{t} \theta d \theta} e^{A_{1} \int_{\tau}^{t} d \theta}
$$

Solving the two integrations gives us:

$$
\phi(t, \tau)=e^{\frac{1}{2}}\left[\begin{array}{cc}
\left(t^{2}-\tau^{2}\right) & 0 \\
0 & \left(t^{2}-\tau^{2}\right)
\end{array}\right] e\left[\begin{array}{cc}
0 & t-\tau \\
-t+\tau & 0
\end{array}\right]
$$

The first term is a diagonal matrix, and the solution to that matrix function is all the individual elements of the matrix raised as an exponent of e. The second term can be decomposed as:

$$
e^{\left[\begin{array}{cc}
0 & t-\tau \\
-t+\tau & 0
\end{array}\right]=e^{\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]^{(t-\tau)}}=\left[\begin{array}{cc}
\cos (t-\tau) & \sin (t-\tau) \\
-\sin (t-\tau) & \cos (t-\tau)
\end{array}\right]}
$$

The final solution is given as:

$$
\begin{aligned}
\phi(t, \tau) & =\left[\begin{array}{cc}
e^{\frac{1}{2}\left(t^{2}-\tau^{2}\right)} & 0 \\
0 & e^{\frac{1}{2}\left(t^{2}-\tau^{2}\right)}
\end{array}\right]\left[\begin{array}{cc}
\cos (t-\tau) & \sin (t-\tau) \\
-\sin (t-\tau) & \cos (t-\tau)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
e^{\frac{1}{2}\left(t^{2}-\tau^{2}\right)} \cos (t-\tau) & e^{\frac{1}{2}\left(t^{2}-\tau^{2}\right)} \sin (t-\tau) \\
-e^{\frac{1}{2}\left(t^{2}-\tau^{2}\right)} \sin (t-\tau) & e^{\frac{1}{2}\left(t^{2}-\tau^{2}\right)} \cos (t-\tau)
\end{array}\right]
\end{aligned}
$$

It is worth to notice that the constant matrix $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ whose matrix exponential is $\left[\begin{array}{cc}\cos (t) & \sin (t) \\ -\sin t(t) & \cos (t)\end{array}\right]$. The reader may consult [6] for more details and proofs.

3. Case Study - Missile Dynamics

Figure 1 [4] shows the geometry of a missile and target both confined to move in a plane. The missile moves at constant speed V_{M} and the target moves in a straight line at constant velocity V_{T}. As shown in the figure the direction of the velocity vector can be controlled by the use of an acceleration a which is assumed to be perpendicular to the relative velocity vector $\mathbf{V}=\mathbf{V}_{\mathbf{M}}-\mathbf{V}_{\mathbf{T}}$. The various parameters depicted in the figure are: r is the range to the target, λ is the inertial line-of-sight angle, σ is the angle subtended at the missile by the velocity vector and the line of sight, γ is the flight path angle and α is the applied acceleration.

Let z be the projected miss distance (distance of closest approach of the missile to the target) under the assumption that the missile continues in a straight line without any further acceleration.

Then, $z=r \sin (\sigma)$ and using the dynamics of relative motion, it can be shown that $\frac{d z}{d t}=\frac{r \cos (\sigma)}{V} \alpha$. Furthermore, assuming that σ is a small angle, then $\frac{d r}{d t} \approx-V$. Thus, $\mathrm{r}(\mathrm{t})=\mathrm{r}_{0}-\mathrm{Vt}$, then $\frac{r}{V} \approx T_{0}-\mathrm{t}=\bar{T}$ which is frequently called "time-to-go" where $T_{0}=\frac{r_{0}}{V}$.

Figure 1. Missile Dynamics Guidance Set-up [4]
With all these assumptions, the following state - space representation of the approximate missile dynamics is

$$
\begin{aligned}
& {\left[\begin{array}{c}
\dot{\lambda} \\
\dot{z}
\end{array}\right]=\left[\begin{array}{cc}
0 & \frac{1}{V\left(T_{0}-t\right)^{2}} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\lambda \\
z
\end{array}\right]+\left[\begin{array}{c}
0 \\
T_{0}-t
\end{array}\right] \alpha \text { with } A(t)=\left[\begin{array}{cc}
0 & \frac{1}{V\left(T_{0}-t\right)^{2}} \\
0 & 0
\end{array}\right] \text { and }} \\
& B(t)=\left[\begin{array}{c}
0 \\
T_{0}-t
\end{array}\right] .
\end{aligned}
$$

As it can be observed the A matrix is time-varying, so for the solution the transition matrix $\Phi(t)$ is needed using the method as described in the theory section. So, using the same method as in the previous section, it can be obtained. This $A(t)$ matrix can be decomposed as follows:

$$
A(t)=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \frac{1}{V\left(T_{0}-t\right)^{2}}+\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Where $\mathrm{f} 1(\mathrm{t})=\frac{1}{V\left(T_{0}-t\right)^{2}}$, and $\mathrm{f} 2(\mathrm{t})=1$. Using the formula

$$
\Phi(t, \tau)=e^{M_{1} \int_{\tau}^{t} \frac{1}{V\left(T_{0}-\theta\right)^{2}} d \theta} e^{M_{2} \int_{\tau}^{t} d \theta}
$$

Solving the two integrations gives us:

$$
\Phi(t, \tau)=e^{\left[\begin{array}{cc}
0 & \left(\frac{1}{T_{0}-t}-\frac{1}{T_{0}-\tau}\right) \frac{1}{V} \\
0 & 0
\end{array} e^{\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]} \text {. } \quad 0 .\right.}
$$

The second term gives the identity matrix $=I$, a nice property of the matrix exponential. The first term can be decomposed as:

$$
e^{\left[\begin{array}{cc}
0 & \left(\frac{1}{T_{0}-t}-\frac{1}{T_{0}-\tau}\right) \frac{1}{V} \\
0 & 0
\end{array}\right]}=e^{\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left(\frac{1}{T_{0}-t}-\frac{1}{T_{0}-\tau}\right) \frac{1}{V}}
$$

So, $e^{\left[\begin{array}{cc}0 & 1 \\ 0 & 0\end{array}\right]\left(\frac{1}{T_{0}-t}-\frac{1}{T_{0}-\tau}\right) \frac{1}{V}=\left[\begin{array}{cc}1 & \left(\frac{1}{T_{0}-t}-\frac{1}{T_{0}-\tau}\right) \frac{1}{V} \\ 0 & 1\end{array}\right]}$
Finally, $\Phi(t, \tau)=\left[\begin{array}{cc}1 & \left(\frac{1}{T_{0}-t}-\frac{1}{T_{0}-\tau}\right)\end{array}\right) \frac{1}{V}\left[\mathrm{I}=\left[\begin{array}{cc}1 & \left(\frac{1}{T_{0}-t}-\frac{1}{T_{0}-\tau}\right)\end{array} \frac{1}{V} \begin{array}{cc}0 & 1\end{array}\right]\right.$.
Finding the transition matrix, a closed form solution to the problem can be found using

$$
\mathbf{x}(t)=\Phi\left(t_{5} t_{0}\right) \mathbf{x}\left(t_{0}\right)+\int_{t_{0}}^{t} \Phi\left(t_{s} \tau\right) \mathbf{B}(\tau) \mathbf{u}(\tau) d \tau
$$

The simulation MATLAB programs are shown in Figure 2 by setting $x_{1}=\lambda$ and $x_{2}=z$ with $V=$ $375 \mathrm{~m} / \mathrm{s}, \mathrm{u}=\alpha=1250 \mathrm{~m} / \mathrm{s}^{2}$ and $\mathrm{T}_{0}=10 \mathrm{~s}$ for a hypothetical highly-maneuverable missile.
\%missile guidance time-varying system
function [Dx] = timevaryingsystem $1(\mathrm{t}, \mathrm{x})$
$\mathrm{V}=375 ; \mathrm{To}=10$; \%V is velocity of missile in meters per second \%To is initial time in seconds
$u=1250 ; \%$ acceleration normal to the missile relative velocity vector in meters per second square
$D x=\left[0^{*} x(1)+\left(1 /\left(V^{*}(T o-t) .{ }^{\wedge} 2\right)\right)^{*} x(2)+0^{*} u ; 0^{*} x(1)+0^{*} x(2)+(\text { To-t })^{*} u\right]$;
\%this is the main time_varying system program calling the function
\%timevaryingsystem1
t _values=linspace($0,10,101$); \%time vector
initial_cond=[0;0];
[tv, Yv]=ode45('timevaryingsystem1',t_values,initial_cond);
plot(tv, Yv(:,1),'+',tv, Yv(:,2),'--')
legend('y1','y2')
xlabel('time in seconds')
ylabel('y1(angle-radians), y2(distance-meters')
title('Missile Guidance')
Figure 2. MATLAB programs used for the simulation

The simulation results are

Figure 3. Simulation of Missile Guidance Dynamics

The simulation clearly demonstrates the approximation of a small σ (sigma) angle and the distance of closest approach travelled by the missile of about 62500 meters.

4. Conclusion

In this research endeavor the necessity of finding the transition matric $\Phi(\mathrm{t}, \mathrm{T})$ of a timevarying system is demonstrated. Obtaining this matrix, a general solution (close form) can be found. Reference [6] is an excellent source for the reader to consult for more details and proves. The missile guidance example is a very important one even if it is simplified. The calculation of the transition matrix for time-varying systems is considerably more tedious than time-invariant systems. The simulation results were as expected.

References

[1] Kailath T. Linear Systems. NJ: Prentice Hall Inc. Englewood Cliffs. 1980.
[2] Martin Braun. Differential Equations and Their Applications. $3^{\text {rd }}$ edition. New York: Springer-Verlag. 1983.
[3] Lygeros J, Ramponi F. Lecture Notes on Linear System Theory, Automatic Control Laboratory. ETH Zurich, Switzerland. 2013.
[4] Friedland B. Control System Design - An Introduction to State-Space Methods. New York: McGraw Hill. 1986.
[5] Palm III WJ. A Concise Introduction to MATLAB. New York: McGraw-Hill. 2008.
[6] www.egr.msu.edu/classes/me851/jchoi/lecture/Lect_24.pdf \& www.egr.msu.edu/classes/me851/jchoi/lecture/Lect_23.pdf
[7] http://en.wikibooks.org/wiki/Control_Systems/Time_Variant_Systen_Solutions

